Question	Answer	Marks	Guidan	ce
1	$[r =]\sqrt{\frac{A}{\pi(x+y)}}$ or $[r =]\sqrt{\frac{A}{\pi x + \pi y}}$ as final answer	2	square root symbol must extend below fraction line; accept to power ½ with appropriate brackets M1 for a triple decker fraction or for $r^2 = \frac{A}{\pi(x+y)}$ or for $[r=]\pm \sqrt{\frac{A}{\pi(x+y)}}$ or for their final answer for <i>r</i> ft their r^2	condone missing end bracket in denominator eg M1 for $[r =] \sqrt{\frac{A}{\frac{\pi}{(x+y)}}}$
		[2]		

2	(i)		B1	for a correct Pythagoras statement for this triangle, in terms of x , with correct brackets	condone another letter instead of <i>h</i> for one mark but not both unless recovered at some point
		$9x^2 = h^2 + 4x^2 + 4x + 1$ and completion to given answer, $h^2 = 5x^2 - 4x - 1$	B1	for correct expansion, with brackets or correct signs; must complete to the given answer with no errors in any interim working may follow $3x^2 = h^2 + (2x + 1)^2$ oe for B0 B1	eg B1 for $h^2 = 9x^2 - (4x^2 + 4x + 1)$ and completion to correct answer but B0 for $h^2 = 9x^2 - 4x^2 + 4x + 1$
			[2]		

3	(i)	$3x^2 + 12x + 13 = 2x + k$	M1	oe eg M1 for $3x^2 + 10x + 13 = k$	condone $3x^2 + 10x + 13 - k = y$ for this M1
		$3x^2 + 10x + 13 - k [= 0]$	M1	for rearranging to 0; condone one error in adding/subtracting; but M0 for $3x^2 + 10x + 13 = k$ or $3x^2 + 10x + 13 - k = y$	$3x^2 + 10x + 13 - k$ [= 0] will also earn the first M1 if a separate statement has not already done so
		$b^2 - 4ac > 0$ oe soi	M1	may be earned near end with correct inequality sign used there	allow $b^2 - 4ac$ is positive' oe; 0 for just 'discriminant > 0' unless implied by later work
		$100 - 4 \times 3 \times (13 - k) (> 0)$ oe	M1	for correct substitution ft into $b^2 - 4ac$, dep on second M1 earned; brackets / signs must be correct	can be earned with equality or wrong inequality, or in formula M0 for trials of values of k in $b^2 - 4ac$
		<i>k</i> > 14/3 oe	A1	accept $k > 56/12$ or better, isw incorrect conversion of fraction but not wrong use of inequalities	
				if A0, allow B1 for 56/12 oe obtained with equality or wrong inequality (ie 3^{rd} M1 has not been earned)	
			[5]	<u> </u>	

3	(ii)	$3(x+2)^2 + 1$ www as final answer	B4	B1 for $a = 3$ and B1 for $b = 2$	condone omission of square symbol;
		y-minimum = 1 [hence curve is above <i>x</i> -axis]	B1	and B2 for $c = 1$ or M1 for $13 - 3 \times \text{their } b^2$ or for $13/3 - \text{their } b^2$ or B3 for $3\left[\left(x+2\right)^2 + \frac{1}{3}\right]$ Stating min pt is (-2, 1) is sufft allow ft if their $c > 0$ B0 for only showing that discriminant is negative oe; need also to justify that it is all above not all below <i>x</i> -axis B0 for stating min point = 1 or ft	ignore equating to zero in working or answer must be done in this part; ignore wrong <i>x</i> -coordinate
3	(iii)	5 cao	B2 [2]	M1 for substitution of their (-2, 1) in y = 2x + k	allow M1 ft their $3(x + 2)^2 + 1$; or use of (-2,1) found using calculus; M0 if they use an incorrect minimum point inconsistent with their completed square form

4	3a + 12 [= ac + 5f]	M1	for expanding brackets correctly	annotate this question if partially correct
	3a - ac = 5f - 12 or ft	M1	for collecting <i>a</i> terms on one side, remaining terms on other	ft only if two <i>a</i> terms
	a(3-c) = 5f - 12 or ft	M1	for factorising <i>a</i> terms; may be implied by final answer	ft only if two <i>a</i> terms, needing factorising may be earned before 2^{nd} M1
	$[a=]\frac{5f-12}{3-c}$ oe or ft as final answer	M1	for division by their two-term factor; for all 4 marks to be earned, work must be fully correct	
		[4]		

5	substitution to eliminate one variable	M1	or multiplication to make one pair of coefficients the same; condone one error in either method	
	simplification to $ax = b$ or $ax - b = 0$ form, or equivalent for y	M1	or appropriate subtraction / addition; condone one error in either method	independent of first M1
	(0.7, 0.1) oe or $x = 0.7, y = 0.1$ oe isw	A2 [4]	A1 each	

6	$3(x-2)^2 - 7$ isw or $a = 3, b = 2 c = 7$ www	4	B1 each for $a = 3, b = 2$ oe	condone omission of square symbol; ignore '= 0'
			and B2 for $c = 7$ oe	
			or M1 for $\left[-\right]\frac{7}{3}$ or for 5 – <i>their a</i> (<i>their b</i>) ²	may be implied by their answer
			or for $\frac{5}{3} - (their b)^2$ soi	
	-7 or ft	B1	B0 for (2, -7)	may be obtained by starting again eg with calculus
		[5]		

7		$4x^4y^{-3}$ or $\frac{4x^4}{y^3}$ as final answer	3 [3]	B1 each 'term'; or M1 for numerator = $64x^{15}y^3$ and M1 for denominator = $16x^{11}y^6$	B0 if obtained fortuitously mark B scheme or M scheme to advantage of candidate, but not a mixture of both schemes

8	$4 + 2k + c = 0 \text{ or } 2^2 + 2k + c = 0$	B1	may be rearranged	
	9 - 3k + c = 35	B1	may be rearranged; the $(-3)^2$ must be evaluated / used as 9	condone -3^2 seen if used as 9
	correct method to eliminate one variable from their eqns	M1	eg subtraction or substitution for <i>c</i> ; condone one error	M0 for addition of eqns unless also multiplied appropriately
	k = -6, c = 8	A1	from fully correct method, allowing recovery from slips	if no errors and no method seen, allow correct answers to imply M1 provided B1B1 has been earned
	or $[x^2 + kx + c =] (x - 2)(x - a)$	or M1	or $(x - 2)(x + b)$	
	$-5 \times (-3 - a) = 35 \text{ oe}$ $a = 4$	M1 A1		
	k = -6, c = 8	A1 [4]		
		[4]		

9	5c + 9t = 2ac + at	M1	for correct expansion of brackets	
	5c - 2ac = at - 9t oe	M1	for correct collection of terms, ft eg after M0 for $5c + 9t = 2ac + t$ allow this M1 for $5c - 2ac = -8t$ oe	for each M, ft previous errors if their eqn is of similar difficulty;
	c(5-2a) = at - 9t oe	M1	for correctly factorising, ft; must be $c \times a$ two-term factor	may be earned before <i>t</i> terms collected
	$[c =]\frac{at - 9t}{5 - 2a}$ or $\frac{t(a - 9)}{5 - 2a}$ oe as final answer	M1	for correct division, ft their two-term factor	treat as MR if <i>t</i> is the subject, with a penalty of 1 mark from those gained, marking similarly
		[4]		

10		$\frac{x-3}{2}$ or $1-\frac{5}{2}$ as final answer www	3	B2 for correct answer seen and then spoilt	
		x+2 $x+2$ $x+2$ $x+2$		M1 for $(x + 3)(x - 3)$ and M1 for $(x + 2)(x + 3)$	
			[3]		

11	$4h + ha^2 = 9a - 5$	M1	correctly collecting h terms on one side, remaining terms on other	
	$h(4+a^2)=9a-5$	M1	for factorising, ft eg sign error	
	$[h=]\frac{9a-5}{4+a^2}$ oe as final answer	M1	for division by their factor; ft only for equiv difficulty	M0 if seen and spoilt, eg by incorrect 'cancelling'
		[3]		